
CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 1 / 11

4.2 Auxiliary classes for networking

PSP class notes (https://psp2dam.github.io/psp_sources) by Vicente Martínez is licensed under

CC BY-NC-SA 4.0 (http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1)

https://psp2dam.github.io/psp_sources
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 2 / 11

4.2 Auxiliary classes for networking
4.2.1. java.net.NetworkInterface
4.2.2 java.net.InterfaceAddress
4.2.3. java.net.InetAddress
4.2.4 java.net.URL
4.2.5 java.net.URLConnection

4.2.1. java.net.NetworkInterface

This class represents network interface, both software as well as hardware, its name, list of IP addresses assigned to it and all
related information. It can be used in cases when we want to specifically use a particular interface for transmitting our packet on
a system with multiple NICs.

java.net.InetAddress specification
(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/NetworkInterface.html)

Method Description

public static Enumeration
getNetworkInterfaces() Returns all the network interfaces on the system.

public List getInterfaceAddresses() Returns a list of all interface addresses on this interface.

public Enumeration getInetAddresses() Returns an enumeration of all InetAddresses bound to this network
interface, if security manager allows it.

public String getName() Returns the name of this network interface.

public int getIndex() Returns the index assigned to this network interface by the system. Indexes
can be used in place of long names to refer to any interface on the device.

public String getDisplayName() This method returns the name of network interface in a readable string
format.

public static NetworkInterface
getByName(String name)

Finds and returns the network interface with the specified name, or null if
none exists.

public static NetworkInterface
getByIndex(int index)

Performs similar function as the previous function with index used as search
parameter instead of name.

public static NetworkInterface
getByInetAddress(InetAddress addr)

This method is widely used as it returns the network interface the specified
inetaddress is bound to. If an InetAddress is bound to multiple interfaces,
any one of the interfaces may be returned.

public boolean isUp() Returns a boolean value indicating if this network interface is up and
running.

What is a Network Interface?

A network interface can be thought of as a point at which your computer connects to the network. It is not necessarily a
piece of hardware but can also be implemented in a software. For example a loopback interface which is used for testing
purposes.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/NetworkInterface.html

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 3 / 11

// Java program to illustrate various java.net.NetworkInterface class methods.

public class NetworkInterfaceExample
{

 public static void main(String[] args) throws SocketException,
 UnknownHostException

 {

 // getNetworkInterfaces() returns a list of all interfaces
 // present in the system.

 ArrayList<NetworkInterface> interfaces = Collections.list(
 NetworkInterface.getNetworkInterfaces());

 System.out.println("Information about present Network Interfaces...\n");

 for (NetworkInterface iface : interfaces)
 {

 // isUp() method used for checking whether the interface in process
 // is up and running or not.

 if (iface.isUp())
 {

 // getName() method
 System.out.println("Interface Name: " + iface.getName());

 // getDisplayName() method

 System.out.println("Interface display name: " + iface.getDisplayName());

 // getHardwareAddress() method
 System.out.println("Hardware Address: " +

 Arrays.toString(iface.getHardwareAddress()));

 // getParent() method
 System.out.println("Parent: " + iface.getParent());

 // getIndex() method

 System.out.println("Index: " + iface.getIndex());
 // Interface addresses of the network interface

 System.out.println("\tInterface addresses: ");

 // getInterfaceAddresses() method
 for (InterfaceAddress addr : iface.getInterfaceAddresses())

 {
 System.out.println("\t\t" + addr.getAddress().toString());

 }
 // Interface addresses of the network interface

 System.out.println("\tInetAddresses associated with this interface: ");

 // getInetAddresses() method returns list of all
 // addresses currently bound to this interface

 Enumeration<InetAddress> en = iface.getInetAddresses();
 while (en.hasMoreElements())

 {
 System.out.println("\t\t" + en.nextElement().toString());

 }

 // getMTU() method
 System.out.println("\tMTU: " + iface.getMTU());

 // getSubInterfaces() method

 System.out.println("\tSubinterfaces: " +
 Collections.list(iface.getSubInterfaces()));

java
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57

58
59

60

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 4 / 11

4.2.2 java.net.InterfaceAddress

This class represents a network interface address. Every device that has an IP address has an IP address on the network interface.

In short it's an IP address, a subnet mask and a broadcast address when the address is an IPv4 one. An IP address and a network
prefix length in the case of IPv6 address.

java.net.InterfaceAddress specification
(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/InterfaceAddress.html)

Method Description

public InetAddress
getAddress() Returns an InetAddress for this address.

public InetAddress
getBroadcast()

Returns the InetAddress for the broadcast address for this interface address. As only
IPv4 addresses have broadcast addresses, null would be returned on using an IPv6
address.

public short
getNetworkPrefixLength() Returns the prefix length for this interface address, i.e. subnet mask for this address.

 // isLoopback() method
 System.out.println("\tis loopback: " + iface.isLoopback());

 // isVirtual() method

 System.out.println("\tis virtual: " + iface.isVirtual());

 // isPointToPoint() method
 System.out.println("\tis point to point: " + iface.isPointToPoint());

 // supportsMulticast() method

 System.out.println("Supports Multicast: " + iface.supportsMulticast());

 }
 }

 // getByIndex() method returns network interface

 // with the specified index
 NetworkInterface nif = NetworkInterface.getByIndex(1);

 // toString() method is used to display textual

 // information about this network interface
 System.out.println("Network interface 1: " + nif.toString());

 // getByName() method returns network interface

 // with the specified name
 NetworkInterface nif2 = NetworkInterface.getByName("eth0");

 InetAddress ip = InetAddress.getByName("localhost");

 // getbyInetAddress() method
 NetworkInterface nif3 = NetworkInterface.getByInetAddress(ip);

 System.out.println("\nlocalhost associated with: " + nif3);
 }

}

61

62
63

64
65

66
67

68
69

70
71

72
73

74
75

76
77

78
79

80
81

82
83

84
85

86
87

88
89

90
91

92
93

94
95

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/InterfaceAddress.html

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 5 / 11

4.2.3. java.net.InetAddress

Java InetAddress class represents an IP address. The java.net.InetAddress class provides methods to get the IP of any host name
for example www.google.com, www.facebook.com, etc.

java.net.InetAddress specification
(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/InetAddress.html)

An instance of InetAddress represents the IP address with its corresponding host name. There are two types of addresses: Unicast
and Multicast. The Unicast is an identifier for a single interface whereas Multicast is an identifier for a set of interfaces.

Local Name Resolver (hosts file)

You should know that DNS translates domain names like into IP addresses. But did you know that there’s a file on your
system that can override that? It’s called your hosts file and lets you map specific domain names to an IP address of your
choosing. Your HOSTS file only affects your computer, so you can use it to create custom URLs for IP addresses on your
network, or you can use it to redirect certain websites.

As you can imagine, editing the HOSTS file can easily break your internet if it’s modified incorrectly or maliciously. So, it’s
not particularly easy for a normal user to edit. This is a good thing.

Windows

The HOSTS file is normally stored in a plain text file in the Windows System folder.

// Java program to illustrate methods of java.net.InterfaceAddress class

public class InterfaceaddressExample
{

 public static void main(String[] args) throws SocketException
 {

 // Modify according to your system
 NetworkInterface nif = NetworkInterface.getByIndex(1);

 List<InterfaceAddress> list = nif.getInterfaceAddresses();

 for (InterfaceAddress iaddr : list)
 {

 // getAddress() method
 System.out.println("getAddress() : " + iaddr.getAddress());

 // getBroadcast() method

 System.out.println("getBroadcast() : " + iaddr.getBroadcast());

 // getNetworkPrefixLength() method
 System.out.println("PrefixLength : " + iaddr.getNetworkPrefixLength());

 // hashCode() method

 System.out.println("Hashcode : " + iaddr.hashCode());

 // toString() method
 System.out.println("toString() : " + iaddr.toString());

 }
 }

}

java
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/InetAddress.html

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 6 / 11

Method Description

public static InetAddress getByName(String host) throws
UnknownHostException

It returns the instance of InetAddress containing
LocalHost IP and name.

public static InetAddress getLocalHost() throws
UnknownHostException

It returns the instance of InetAdddress containing local
host name and address.

public String getHostName() It returns the host name of the IP address.

public String getHostAddress() It returns the IP address in string format.

public boolean isReachable(int timeout) This method tests whether that address is reachable.

Hit the start menu or press the Windows key and start typing Notepad.

Right-click Notepad and choose Run as administrator.

In Notepad, click File then Open… In the File name field, paste the following path in:

c:\Windows\System32\Drivers\etc\hosts

Now you’ll be able to edit and save changes to your HOSTS file.

To map a domain, add a line based on the examples in the HOSTS file.

OS X & GNU/Linux

The file is in /etc/hosts and you should edit it with administrator privileges.

Add the following lines to the hosts file
At school

- use your computer IP for the 'cliente' and 'servidor' entries.
- use the teacher's computer IP as the 'profesor' entry

At home
- use your computer IP for the 'cliente', 'servidor' and 'profesor' entries.

In all the activities, we will always use these domain names

making our apps work at home and at school without having to change any IP address.
10.100.XX.1 cliente.psp

10.100.XX.1 servidor.psp
10.100.0.1 profesor.psp

class InetAddressExample {

 public static void main(String[] args)
 throws UnknownHostException

 {
 // To get and print InetAddress of Local Host

 InetAddress address1 = InetAddress.getLocalHost();
 System.out.println("InetAddress of Local Host : "

 + address1);

 // To get and print InetAddress of Named Host
 InetAddress address2

 = InetAddress.getByName("45.22.30.39");
 System.out.println("InetAddress of Named Host : "

sh
1

2
3

4
5

6
7

8
9

10
11

12

java
1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 7 / 11

4.2.4 java.net.URL

The Java URL class represents an URL. URL is an acronym for Uniform Resource Locator.

Host seeker (U4S4_HostSeeker)

Your computer is connected to a LAN (Local Area Network) and probably it is using private IP addresses.

Addresses can be one of class C (192.168.X.Y), class B (172.17.X.Y) or class A (10.X.Y.Z). That depends on the network
mask or network prefix used for the network interface configuration.

You can also check it using Linux ifconfig command or Windows ipconfig command.

Write a program to know which hosts are up and running in your network, that is, which hosts are reachable from you
computer by using one of the interfaces.

First, you can write specific code to test your network. Once your app is working, try to make it generic and reusable by
making it work in any network, detecting the network prefix and checking all the possible IPs in a network.

The app will get a Network interface card name as argument and will check only the IPv4 addresses attached to that
interface. We can know if an IP is IPv4 or IPv6 using the operator ìnstanceof with Inet4Address and Inet6Address
subclasses of InetAddress

 + address2);

 // To get and print ALL InetAddresses of Named Host

 InetAddress address3[]
 = InetAddress.getAllByName("172.19.25.29");

 for (int i = 0; i < address3.length; i++) {
 System.out.println(

 "ALL InetAddresses of Named Host : "
 + address3[i]);

 }

 // To get and print InetAddresses of
 // Host with specified IP Address

 byte IPAddress[] = { 125, 0, 0, 1 };
 InetAddress address4

 = InetAddress.getByAddress(IPAddress);
 System.out.println(

 "InetAddresses of Host with specified IP Address : "
 + address4);

 // To get and print InetAddresses of Host

 // with specified IP Address and hostname
 byte[] IPAddress2

 = { 105, 22, (byte)223, (byte)186 };
 InetAddress address5 = InetAddress.getByAddress(

 "gfg.com", IPAddress2);
 System.out.println(

 "InetAddresses of Host with specified IP Address and hostname : "
 + address5);

 }
}

16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 8 / 11

java.net.URL specification (https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/URL.html)

It points to a resource on the World Wide Web. For example:

http://psp2dam.github.io/psp_pages/

A URL contains many information:

Protocol: In this case, http is the protocol.
Server name or IP Address: In this case, psp2dam.github.io is the server name.
Port Number: It is an optional attribute. Many times it is derived from the protocol, by chosing its standard default port. In the
example the port is missing but it is set to 80 .
File Name or directory name: In this case, only the path (directory) is specified in the URL. Depending on the server
configuration the file name can take a default value. In the example index.html is the file name.

Constructor Description

URL(String spec) Creates an instance of a URL from the String representation.

URL(String protocol, String host, int port, String file) Creates an instance of a URL from the given protocol, host, port
number, and file.

URL(String protocol, String host, int port, String file,
URLStreamHandler handler)

Creates an instance of a URL from the given protocol, host, port
number, file, and handler.

URL(String protocol, String host, String file) Creates an instance of a URL from the given protocol name, host
name, and file name.

URL(URL context, String spec) Creates an instance of a URL by parsing the given spec within a
specified context.

URL(URL context, String spec, URLStreamHandler
handler)

Creates an instance of a URL by parsing the given spec with the
specified handler within a given context.

The java.net.URL class provides many methods. The important methods of URL class are given below.

Method Description

public String getProtocol() it returns the protocol of the URL.

public String getHost() it returns the host name of the URL.

public String getPort() it returns the Port Number of the URL.

public String getFile() it returns the file name of the URL.

public String getAuthority() it returns the authority of the URL.

public String toString() it returns the string representation of the URL.

public String getQuery() it returns the query string of the URL.

public String getDefaultPort() it returns the default port of the URL.

public URLConnection
openConnection() it returns the instance of URLConnection i.e. associated with this URL.

public InputStream openStream() it opens a connection to this URL and returns an InputStream for reading from
that connection.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/URL.html

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 9 / 11

Method Description

public boolean equals(Object obj) it compares the URL with the given object.

public Object getContent() it returns the content of the URL.

public String getRef() it returns the anchor or reference of the URL.

public URI toURI() it returns a URI of the URL.

Let us see another example URL class in Java.

4.2.5 java.net.URLConnection

The Java URLConnection class represents a communication link between the URL and the application. It can be used to read and
write data to the specified resource referred by the URL.

java.net.URLConnection specification
(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/URLConnection.html)

//URLDemo.java

public static void main(String[] args) throws MalformedURLException{

 URL url=new URL("http://psp2dam.github.io/psp_pages");

 System.out.println("Protocol: "+url.getProtocol());
 System.out.println("Host Name: "+url.getHost());

 System.out.println("Port Number: "+url.getPort());
 System.out.println("File Name: "+url.getFile());

}

//URLDemo.java

public static void main(String[] args){
 URL url=new URL("https://www.google.com/search?q=javatpoint&oq=javatpoint&sourceid=chrome&ie=UTF-8");

 System.out.println("Protocol: "+url.getProtocol());

 System.out.println("Host Name: "+url.getHost());
 System.out.println("Port Number: "+url.getPort());

 System.out.println("Default Port Number: "+url.getDefaultPort());
 System.out.println("Query String: "+url.getQuery());

 System.out.println("Path: "+url.getPath());
 System.out.println("File: "+url.getFile());

}

Protocol: https

Host Name: www.google.com
Port Number: -1

Default Port Number: 443
Query String: q=javatpoint&oq=javatpoint&sourceid=chrome&ie=UTF-8

Path: /search
File: /search?q=javatpoint&oq=javatpoint&sourceid=chrome&ie=UTF-8

java
1
2

3
4

5
6

7
8

9
10

java
1

2
3

4
5

6
7

8
9

10
11

12

sh

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/URLConnection.html

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 10 / 11

URLConnection is an abstract class. The two subclasses HttpURLConnection and JarURLConnection makes the connection
between the client Java program and URL resource on the internet.

With the help of URLConnection class, a user can read and write to and from any resource referenced by an URL object. Once a
connection is established and the Java program has an URLConnection object, we can use it to read or write or get further
information like content length, etc.

The URLConnection class provides many methods. We can display all the data of a webpage by using the getInputStream()
method. It returns all the data of the specified URL in the stream that can be read and displayed.

Method Description

void connect() It opens a communications link to the resource referenced by this URL, if such a
connection has not already been established.

Object getContent() It retrieves the contents of the URL connection.

String getContentEncoding() It returns the value of the content-encoding header field.

int getContentLength() It returns the value of the content-length header field.

long getContentLengthLong() It returns the value of the content-length header field as long.

String getContentType() It returns the value of the date header field.

long getDate() It returns the value of the date header field.

boolean getDoInput() It returns the value of the URLConnection's doInput flag.

boolean getDoInput() It returns the value of the URLConnection's doOutput flag.

String getHeaderField(int n) It returns the value of nth header field

String getHeaderField(String name) It returns the value of the named header field.

String getHeaderFieldKey(int n) It returns the key for the nth header field.

Map<String, List<String>>
getHeaderFields() It returns the unmodifiable Map of the header field.

long getIfModifiedSince() It returns the value of the object's ifModifiedSince field.

InputStream getInputStream() It returns an input stream that reads from the open condition.

long getLastModified() It returns the value of the last-modified header field.

OutputStream getOutputStream() It returns an output stream that writes to the connection.

URL getURL() It returns the value of the URLConnection's URL field.

void setDoInput(boolean doinput) It sets the value of the doInput field for this URLConnection to the specified value.

void setDoOutput(boolean
dooutput)

It sets the value of the doOutput field for the URLConnection to the specified
value.

How to get the object of URLConnection Class

The openConnection() method of the URL class returns the object of URLConnection class.

CFGS DAM 4.2 Auxiliary classes for networking | Process and Service Programming

IES Doctor Balmis 11 / 11

MalformedURLException

If you test the previous code, you will get a MalformedURLException exception. What should you change to make it
work?

Images downloader (U4S7_ImagesDownloader)

Create an application to download images from a URL. The image URL must be given as an application argument and the
image has to be saved in a images folder on the root of your project.

// URLConnectionExample
public static void main(String[] args) throws MalformedURLException, IOException{

 // Creating an object of URL class

 // Custom input URL is passed as an argument

 URL u = new URL("www.google.com");

 // Creating an object of URLConnection class to
 // communicate between application and URL

 URLConnection urlconnect = u.openConnection();

 // Creating an object of InputStream class
 // for our application streams to be read

 InputStream stream
 = urlconnect.getInputStream();

 BufferedReader in =

 new BufferedReader(
 new InputStreamReader(stream));

 // Till the time URL is being read
 String line;

 while ((line = in.readLine()) != null) {

 // Continue printing the stream
 System.out.println(line);

 }
}

java
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28

	4.2 Auxiliary classes for networking
	

	4.2 Auxiliary classes for networking
	4.2.1. java.net.NetworkInterface
	4.2.2 java.net.InterfaceAddress
	4.2.3. java.net.InetAddress
	4.2.4 java.net.URL
	4.2.5 java.net.URLConnection

